看板 Math 關於我們 聯絡資訊
※ 引述《Danielhsieh (阿光)》之銘言: : sum x=0 to y x/[(x-1)!(y-x)!] : 查過答案是(y+1)*2^(y-1)/(y-1)! : 中間過程想不出來 : 要怎麼把原式的x消掉? as x/[(x-1)!(y-x)!] = 1/(y-1)! * x * C(y-1, x-1) so sum_{x=0 to y} { 1/(y-1)! * x * C(y-1, x-1) } = 1/(y-1)! * sum_{x=0 to y} {x * C(y-1, x-1)} = 1/(y-1)! * sum_{x=1 to y} {x * C(y-1, x-1)} = 1/(y-1)! * sum_{x=0 to y-1} {(x+1) * C(y-1,x)} = 1/(y-1)! * { sum_{x=0 to y-1}C(y-1,x) + sum_{x=0 to y-1}{x*C(y-1,x)} } = 1/(y-1)! * {2^(y-1) + sum_{x=0 to y-1} x* C(y-1,x) } now let f(z) = (1+z)^(y-1) = sum_{x=0 to y-1} C(y-1,x)*z^x f'(z) = (y-1)*(1+z)^(y-2) = sum_{x=0 to y-1} x*C(y-1,x)*z^(x-1) set z = 1, so sum_{x=0 to y-1} {x C(y-1,x)} = (y-1)*2^(y-2) the answer is (y+1)*2^(y-2)/(y-1)! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.38.211.232
Danielhsieh :thanks 04/09 22:11