看板 Math 關於我們 聯絡資訊
※ 引述《represent1 (represent)》之銘言: : 一題複變: : Suppose that f is an entire 1-1 function. show that f(z)= az+b : 有請複變高手來幫忙~ 感恩! Choose a point z0 so that f'(z0)≠0. Let g(z)=f(z+z0)-f(z0) then g(z) is an entire ,1-1 function. ( g(0)=0 , g'(0)≠0 ) ∵ g(0) = 0 , ∴ g(z) = z * h(z) where h(z)≠0 for all z . 為了獲得關於 h(z) 在"∞"附近函數的行為,所以觀察 g(z) 在"∞"附近時的表現. g'(0)≠0 , there exists open neighborhoods U of 0 , V of 0 such that ╴╴ g(U) = V . (suppose V 包含 Br(0) (半徑r>0閉球),U 取 bounded) ∵ g : 1-1 function => ||g(z)|| > r for all z 屬於 C-U . 1 1 ( => ──── < ── ) ||g(z)|| r 1 Let s(z) = ─── , then z=0 is a removable singularity of s(z) . g(1/z) Take s(0) = lim s(z) = a = 0 (if a≠0 => g(z) bounded => g(z)=c →←) z→0 Again s(0) = 0 , so s(z) = (z^n) * t(z) where t(0)≠0 , n:some positive integer s(z) z lim ─── = lim ─────── = t(0) ≠ 0 z→0 z^n z→0 (z^n) * h(1/z) Either h(z) or 1/h(z) is bounded ! ─── ─── ( n=1) (n >1) so g(z) = z * h(z) = z * c  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ # -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.224.204.19