看板 Math 關於我們 聯絡資訊
原題描述: 在一場宴會中有十人,若任意兩人握手之機率為1/3,則該場宴會握手次數的期望值為? 問題如下 : 原題解法是已經會了,但不了解自己的解法錯在何處。 排組原本上下的數字我寫成左右,請見諒。 我只考慮握一次手的機率 十個人中選兩人出來,讓他們握手。 >>>>> (10 2) * (1/3) 但出來為15,明顯不是一種機率... 在乘上另外四組不握手的機率 >>>> (10 2) * (1/3) * (2/3)^4 出來數字更大了.... 想說剩下四組也該分一下....就乘上...(8 2)(6 2).....結果出來的數字又飆漲了不少 連只握一次手的機率都算不出來了Orz 僅求指點這想法究竟會多算到什麼導致數字變成這樣呢? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.121.216.68
ERT312 :有沒有完整的題目? 04/13 23:46
k32314282 :答案是? 另外四組不握手<=這是? 題目沒說要分組吧 04/13 23:51
k32314282 :(10,2)是說10人互相握手最多有45次 *(1/3) 意思是? 04/13 23:53
asilzheng :原題不是問期望值嗎?? 04/14 00:08
期望值的答案為15 我想知道的是....宴會結束後,只握一次手的機率。這方面沒答案。 期望值我已經會算了 題目是完整的!! 後來我的想法變成.....[1 / (10 2)*(8 2)*(6 2)*(4 2)] * (1/5) * (1/3) * (2/3)^4 樣本數是分成五組的全部方法,然後取一組,讓他們握手,剩下四組不握手。 分組是因為兩個人才能握手~ ※ 編輯: lovesnake 來自: 140.121.216.68 (04/14 00:30)
k32314282 :如果要只握一次不確定是不是(10,2)*(1/3)*(2/3)^44 04/14 00:40
k32314282 :分組感覺最多也只能5組握手 但組組之間人也能握吧 04/14 00:41