看板 Math 關於我們 聯絡資訊
※ 引述《gotodmcyo (小情)》之銘言: : 設{An}為一實數數列滿足 : A1=1 , An+1=1/(1+An) n=1,2,3..... : 這題應該是要用柯西的方現來證收斂的八?? : n無限大時任意兩項的差會趨近於零 : 但不知道要怎麼證才有辦法證出趨近於零?? : thx!~ Let a_n + a_{n+1} = a_{n+2}, n=0,1,2,3,.... and a0=1, a1=1 then a0=1, a1=1, a2=2, a3=3, a4=5, a5=8, a6=13, a7=21,.... then A_n = a_{n-1}/a_n we can easily prove that a_k * a_{k+3} - a_{k+1} * a_{k+2} = 1 for k is even -1 for k is odd and (a_k)^2 - a_{k-1} * a_{k+1} = 1 for k is even -1 for k is odd then A1 > A3 > A5 > ....> 0 A2 < A4 < A6 < ....< 1 then A_k →α for k is even →β for k is odd however, |A_n - A_{n+1}| = 1/(a_n * a_{n+1}) →0 hence, α=β -- 新梗題 good question -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 27.147.57.77