※ 引述《gotodmcyo (小情)》之銘言:
: 設{An}為一實數數列滿足
: A1=1 , An+1=1/(1+An) n=1,2,3.....
: 這題應該是要用柯西的方現來證收斂的八??
: n無限大時任意兩項的差會趨近於零
: 但不知道要怎麼證才有辦法證出趨近於零??
: thx!~
Let a_n + a_{n+1} = a_{n+2}, n=0,1,2,3,....
and a0=1, a1=1
then
a0=1, a1=1, a2=2, a3=3, a4=5, a5=8, a6=13, a7=21,....
then
A_n = a_{n-1}/a_n
we can easily prove that
a_k * a_{k+3} - a_{k+1} * a_{k+2} = 1 for k is even
-1 for k is odd
and
(a_k)^2 - a_{k-1} * a_{k+1} = 1 for k is even
-1 for k is odd
then
A1 > A3 > A5 > ....> 0
A2 < A4 < A6 < ....< 1
then
A_k →α for k is even
→β for k is odd
however,
|A_n - A_{n+1}| = 1/(a_n * a_{n+1}) →0
hence, α=β
--
新梗題 good question
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 27.147.57.77