看板 Math 關於我們 聯絡資訊
Let H=H1×H2 both these spaces are Hilbert spaces. P:H→H by P(x,y)=(0,y) (orthogonal projection) V is a closed subspace of H Then P(V) is also a closed subspace. Prove or disprove it. 小弟個人覺得這個論述是對的,但是不知道怎麼證明,請版上的大大幫忙! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.51.110
keroro321 :H1=H2=|R, xy=1,x>0,y>0 04/26 10:41
keroro321 :喔抱歉 看錯 是subspace 04/26 10:48
zombiea :P is continuous 04/26 18:43
jacky7987 :這樣應是拉回來closed 04/26 19:00
Lpspace :我知道拉回來closed,我現在就是要證明送過去到底 04/26 21:10
Lpspace :會不會是closed 04/26 21:11
herstein :直覺看起來應該是會對... 04/26 21:38
herstein :但直覺不一定是對的XD 04/27 02:14
Lpspace :樓上說出我的苦惱了XD 04/27 09:40
ppia :我覺得不對耶 Let e_n be a complete basis of a 05/02 15:30
ppia :separable Hilbert space H. Let H_1 = <{e_{2n-1}}> 05/02 15:30
ppia :H_2 = <{e_{2n}}>. H = H_1(+)H_2 05/02 15:31
ppia :Let f_n = (n e_{2n-1}+e_{2n})/(n^2+1)^{1/2} 05/02 15:32
ppia :Then {f_n} is orthonormal. 05/02 15:32
ppia :Let V be the closure of <{f_n}>. Then {f_n} is a 05/02 15:33
ppia :complete basis for V. 05/02 15:33
ppia :Set y=Sum e_{2n}/n, from n=1 to infty 05/02 15:35
ppia :Clearly, P(V) is dense in H_2. 05/02 15:36
ppia :But I claim that y does not sit in P(V). 05/02 15:37
ppia :This is so becuase each vector in V can be 05/02 15:38
ppia :expanded in terms of f_n. 05/02 15:38
Lpspace :y is not in P(V), then not closed?????? 05/02 19:28
ppia :Because P(V) is dense in H_2. 05/02 23:46
Lpspace :but y is not convergent (in norm) 05/03 11:10
Lpspace :sorry, u are right 05/03 11:10
sneak : H1=H2=|R, x https://muxiv.com 08/13 16:49
sneak : sorry, u ar https://daxiv.com 09/17 14:45