※ 引述《GLP (^__________^)》之銘言:
: -> 2->
: -> dx -> d x
: F = (-e)*( E ) + (-m*P --- ) + ( -αx ) = m ---
: dt dt^2
: 求解 謝謝
我先將這個問題化為一個一維的問題,
如果題目是更高維度, 就拆成很多個一維來處理:
m(x'') + mP(x') + αx = -eE
先解homogeneous solution
m(r^2) + mP(r) + α = 0 =>
r1 = {-mP+sqrt[(mP)^2-4mα]}/2m
r2 = {-mP-sqrt[(mP)^2-4mα]}/2m
所以 x = c1*exp(r1*t) + c2*exp(r2*t)
再解particular solution: 令 x = A 代入
αA = -eE => A = -eE/α
所以 x = c1*exp(r1*t) + c2*exp(r2*t) - eE/α
回到原本問題 令 x = [x1 x2 x3]
x = c1*exp(r1*t) + c2*exp(r2*t) - e(Ex)/α
x = c1*exp(r1*t) + c2*exp(r2*t) - e(Ey)/α
x = c1*exp(r1*t) + c2*exp(r2*t) - e(Ez)/α
依此類推
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.30.99