看板 Math 關於我們 聯絡資訊
※ 引述《ethan0221 (Ethan)》之銘言: : 題目如下: : Let U be a uniform random variable on interval(0,1). Suppose that the : conditional distribution of X, given U = p, is binomial with parameter(n,p). : Find the probability mass function of X. : 感謝回答! :] f(x,p)=C(n,x)p^x(1-p)^(n-x), x=0,...,n, 0<p<1 1 n! x!(n-x)! f(x)=∫ f(x,p)dp=C(n,x)beta(x+1,n-x+1)=--------- ---------- 0 x!(n-x)! (n+1)! =1/(n+1), x=0,...,n so X is discete uniform distribution -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.51.110
ethan0221 :感謝! :] 05/05 10:03