看板 Math 關於我們 聯絡資訊
there is another manner that we can apply : M (t) = E(exp (tX)|U=p) = [ q + p exp(t) ] ^n , q = 1-p X|U M (t) = EE(exp(tX|U)) X = E( (1-U) + Uexp(t))^n ) = E(Σ(n)(1-U)^n (Uexp(t))^n-k ) (k) Also , E((1-U)^n (Uexp(t))^n-k) = Beta ( k+1 , n+1-k ) use this result , we have M (t) X n! k! (n-k)! exp(nt) exp(-kt) =Σ------------------ k! (n-k)! (n+1)! exp(nt) = ------------------------- n+1 (1 - exp(-t) thus we know X~Discrete Uniform(0,1,2 ... n) -------------------------------------------- have fun :) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.169.42.122
ethan0221 :感謝! :] 05/06 20:23