推 ethan0221 :感謝! :] 05/06 20:23
there is another manner that we can apply :
M (t) = E(exp (tX)|U=p) = [ q + p exp(t) ] ^n , q = 1-p
X|U
M (t) = EE(exp(tX|U))
X
= E( (1-U) + Uexp(t))^n )
= E(Σ(n)(1-U)^n (Uexp(t))^n-k )
(k)
Also , E((1-U)^n (Uexp(t))^n-k) = Beta ( k+1 , n+1-k )
use this result , we have
M (t)
X
n! k! (n-k)! exp(nt) exp(-kt)
=Σ------------------
k! (n-k)! (n+1)!
exp(nt)
= -------------------------
n+1 (1 - exp(-t)
thus we know X~Discrete Uniform(0,1,2 ... n)
--------------------------------------------
have fun :)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 118.169.42.122