※ 引述《adamchi (adamchi)》之銘言:
: 3.計算(3^4+4^3)/(7^4+4^3)*(11^4+4^3)/(15^4+4^3)*(19^4+4^3)/(23^4+4^3)*
: (27^4+4^3)/(31^4+4^3)*(35^4+4^3)/(39^4+4^3)*(43^4+4^3)/(47^4+4^3)=?
: 答:1/481
觀察式子中的每一項,會發現都是
(4n-1)^4 + 4^3
其中 n = 1,3,5,7,9,11 在分子
n = 2,4,6,8,10,12 在分母
(4n-1)^4 + 4^3
= [(4n-1)^2]^2 + (2^3)^2 a^2+b^2 = (a+b)^2 - 2ab
= [(16n^2-8n+1) + 8]^2 - 2*(4n-1)^2*(2^3)
= (16n^2-8n+9)^2 - (16n-4)^2 a^2-b^2 = (a+b)(a-b)
= [(16n^2-8n+9) + (16n-4)] * [(16n^2-8n+9) - (16n-4)]
= (16n^2+8n+5)(16n^2-24n+13)
= [(4n+1)^2+4][(4n-3)^2+4]
= [(4n-3)^2+4][(4n+1)^2+4]
因為 4n-3 = (4n+1) - 4,
所以帶回原式後兩兩可以相消:
原式 = [(4*1-3)^2+4][(4*1+1)^2+4] / [(4*2-3)^2+4][(4*2+1)^2+4] * ...
= (1^2+4)(5^2+4)/(5^2+4)(9^2+4) * (9^2+4)(13^2+4)/(13^2+4)(17^2+4)
* ... * (41^2+4)(45^2+4)/(45^2+4)(49^2+4)
= (1^2+4) / (49^2+4)
= 5/2405
= 1/481
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.116.192.94