看板 Math 關於我們 聯絡資訊
※ 引述《mathtype (ψ 綻 藍 )》之銘言: : 12的平方 + 33的平方 = 1233 : 若限定和的結果為四位數,則類似的情況有哪些? y^2-y=100x-x^2=-(x-50)^2+2500<=2500 hence, y^2<=2500+y<=2599<51^2 9<y<51 x^2+y^2=100x+y x^2+y^2=x+y mod99 x(x-1)+y(y-1)=0 mod9 x(x-1)+y(y-1)=0 mod11 since y(y-1) is even, x must be even, then 4|y(y-1) 0*1=0,1*2=2,2*3=6,3*4=3,4*5=2,5*6=3,6*7=6,7*8=2 mod9 hence, y=0,1,3,4,6,7 mod9 then y=12,13,16, 21,24,25,28, 33,36,37, 41,45,48,49 0*1=0,1*2=2,2*3=6,3*4=1,4*5=9,5*6=8,6*7=9,7*8=1,8*9=6,9*10=2 mod11 hence, y=0,1,2,5,7,10 mod11 then y=12,13,16, 21,24,29, 32,33, 40,44,45,49 possible y=12,13,16,21,24,33,45,49 and y(y-1) should be factored to a*(100-a) y(y-1)=12*11 NO =13*12 NO =16*15=2*120=3*80 NO =21*20=2*210=3*140=4*105=5*84 NO =24*23=4*138=6*92 NO =33*32=8*132=12*88 YES =45*44=20*99=22*90=30*66 NO =49*48=42*56=28*84 NO -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 27.147.57.77
AZsorcerer :哈 我用x也是找不到其他結果 06/08 19:34
AZsorcerer :應該說就是多8833那個 06/08 19:35
※ 編輯: JohnMash 來自: 27.147.57.77 (06/09 19:12)