看板 Math 關於我們 聯絡資訊
http://ycc.math.fju.edu.tw/t2012s/odes2012s/odes2012sf1.pdf 裡面的第三,四,五,八題不會解 課本也找不到解答 第四題(來源: http://www.chegg.com/homework-help/elementary-differential-equations-and-boundary-value-problems-9th-edition-chapter-7.4-problem-3p-solution-9780470383346) Let X(1)X(2)...X(n) are the solutions of homogeneous equation x' = P(t)x Then the Wroskian satisfies the equation or Integrating both sides: (C is arbitrary constant of integration) Taking the exponential of both sides and rearranging: W=c e^∫(P11+P22+..+Pnn)dt Let X(1)X(2) be the set of fundamental solutions. W1=C1e^∫(P11+P22+..+Pnn)dt W2=C2e^∫(P11+P22+..+Pnn)dt C1C2不為0 (這一步看不懂) Therefore: & where & Dividing W1 by W2 we get: Therefore: where is a constant (c2 ≠ 0) 第八題看不懂題目 跪求解答 謝謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 123.193.28.181 ※ 編輯: rebe212296 來自: 123.193.28.181 (06/09 13:36) ※ 編輯: rebe212296 來自: 123.193.28.181 (06/09 13:37)
rebe212296 :第五題我解出來了 06/09 15:22
yueayase :fundamental set of solution是n個線性獨立解 06/09 22:49
yueayase :所以wronskian 不為0 06/09 22:49