看板 Math 關於我們 聯絡資訊
※ 引述《rebe212296 (綠豆冰)》之銘言: : http://ycc.math.fju.edu.tw/t2012s/odes2012s/odes2012sf1.pdf : 裡面的第三,四,五,八題不會解 : 課本也找不到解答 : 第四題(來源: : http://www.chegg.com/homework-help/elementary-differential-equations-and-boundary-value-problems-9th-edition-chapter-7.4-problem-3p-solution-9780470383346) : Let X(1)X(2)...X(n) are the solutions of homogeneous equation : x' = P(t)x : Then the Wroskian satisfies the equation : or : Integrating both sides: (C is arbitrary constant of integration) : Taking the exponential of both sides and rearranging: : W=c e^∫(P11+P22+..+Pnn)dt : Let X(1)X(2) be the set of fundamental solutions. : W1=C1e^∫(P11+P22+..+Pnn)dt : W2=C2e^∫(P11+P22+..+Pnn)dt C1C2不為0 (這一步看不懂) : Therefore: : & : where & : Dividing W1 by W2 we get: : Therefore: where is a constant (c2 ≠ 0) : 第八題看不懂題目 : 跪求解答 謝謝 8. 2 2 2 2 (D - 1)x - 2Dy = 0 (D - 1)(D - 1)x - 2(D - 1)Dy = 0 => 2 2 2 2Dx + (D - 1)y = 0 4D x + 2D(D - 1)y = 0 兩式相加 4 2 (D + 2D +1)x = 0 4 2 2 2 特徵方程式: r + 2r + 1 = (r + 1) = 0 => r = ±i (各為二重根) => x = (c1+c2t)cos t + (c3+c4t) sin t x' = c2 cos t - (c1+c2t)sin t + c4sin t + (c3+c4t) cos t = (c2+c3+c4t)cos t + (c4-c1-c2t)sin t x'' = c4 cos t -(c2+c3+c4t)sin t -c2sin t + (c4-c1-c2t)cos t = (2c4-c1-c2t)cos t - (2c2+c3+c4t)sin t x''-2y' = x => y' = (x''- x)/2 = (c4-c1-c2t)cos t - (c2+c3+c4t) sin t => y = ∫[(c4-c1-c2t)cos t - (c2+c3+c4t) sin t]dt + c5 = (c4-c1)sin t -c2(tsin t+cos t) + (c2+c3)cos t -c4(-tcos t + sin t) + c5 = (c3+c4t)cos t - (c1+c2t)sin t + c5 y'' = -c2cos t - (c4-c1-c2t)sin t -c4sin t -(c2+c3+c4t)cos t = -(2c2+c3+c4t)cos t - (2c4-c1-c2t)sin t y''+2x' = y => (c3+c4t)cos t - (c1+c2t)sin t = (c3+c4t)cos t - (c1+c2t)sin t + c5 => c5 = 0 ∴ x = (c1+c2t)cos t + (c3+c4t) sin t y = (c3+c4t)cos t - (c1+c2t)sin t -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.251.177.172