看板 Math 關於我們 聯絡資訊
※ 引述《tasukuchiyan (Tasuku)》之銘言: : Let f be a complex measurable function. : Assume 0 < ||f||_∞ < ∞ and ||f||_r < ∞ for some r < ∞. : Prove that ||f||_p → ||f||_∞ as p → ∞. 1.let ║f║ = M ∞ ║f║ ≧ [∫ |f|^p ]^(1/p) ≧ ( M-ε) |{|f|≧ M-ε}|^(1/p) p {|f|≧ M-ε} => liminf ║f║ ≧ liminf ( M-ε) |{|f|≧ M-ε}|^(1/p) p = M-ε = ║f║ -ε ∞ 2. let p > r (p-r)/p ║f║ = [∫|f|^r |f|^(p-r) ]^(1/p) ≦ ║f║ [∫|f|^r ]^(1/p) p ∞ (p-r)/p => limsup ║f║ ≦ limsup ║f║ [∫|f|^r ]^(1/p) p ∞ = ║f║ ∞ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.115.222.5
tasukuchiyan:一直卡在limsup這步,沒想到這麼簡潔漂亮,感謝您 06/11 09:55