看板 Math 關於我們 聯絡資訊
※ 引述《mrporing (波利先生)》之銘言: : 有個證明題是這樣的: : A為一個n*n的正定實數方陣,B是一個m*n的實數矩陣且為滿秩(full rank),則證明 : BAB^(T)也會是正定。 (i) Obviously, if m > n, it is not true (ii) if m <= n, it is yes Proof of (ii) if not, then exists a nonzero row vector x such that x.B.A.B^T.x^T = 0 denote y = x.B then y.A.y^T = 0 but A is positive definite hence, y = 0 that is, x.B = 0 has a nontrivial solution. Contradiction. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 27.147.57.77