看板 Math 關於我們 聯絡資訊
※ 引述《yyc2008 ()》之銘言: : 想請教一個證明 : 卡了有點久 : 想不出來... : If three 2 by 2 matrices, M_1, M_2, and M_3, satisfy the following relation, : [M_i,σ_j] = 2iε_ijk M_k where σs are Pauli matrices, : prove (M_1, M_2, M_3) = a (σ_1, σ_2, σ_3) a is some constant. Suppose M1 is an arbitrary 2*2 matrix M1=aI+bσ1+cσ2+dσ3, where a,b,c,d are COMPLEX Similarly, M2=eI+fσ1+gσ2+hσ3 [M1,σ2]=[bσ1+cσ3,σ2]=2ibσ3-2icσ1=2iM3 [M2,σ1]=[gσ2+hσ3,σ1]=-2igσ3-2ihσ2=-2iM3 hence, M3 = k3 σ3, Similarly, M2 = k2 σ2, M1 = k1 σ1 but [σi,σj] = 2εijk σk hence, k1 = k2 =k3 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 27.147.57.77
yyc2008 :謝謝JohnMash大 07/21 20:52