作者pentiumevo (數學系最不靈光的人)
看板Math
標題[數論] 請教畢氏三元組公式
時間Mon Aug 6 18:50:44 2012
近來在讀初等數論,正好k到畢氏三元數
之前看"數學女孩-費馬最後定理"中也有提到,只是沒有認真去想
我看了看課本跟小說中的解說,覺得公式的推導對我來說不是那麼直觀
就算是用單位圓想,我也沒有想不到拉直線要那樣拉
所以我就自己想了幾天,再上網找點資料
看到一個網站(從維基百科連過去)
http://www.xieguofang.cn/Maths/Number_Theory/Fermats_Last_Theorem_1.htm
裏頭的推導我覺得比較直觀些
但我在最後證明時有點疑問,想請教大家
網站上的公式與一般書本不大一樣(但應該是等價的)
網站的作者是這樣下手的:
考慮
2 2 2
a + b = c
其中 gcd(a, b, c) = 1
先用奇偶分析可以證明a, b必是一奇一偶, 不失一般性,令a是奇數、b是偶數。
原式變形得
2
a = (c - b)(c + b) 這裡顯然可知 c - b < c + b
由於
2 2
a = 1 * a
如果先假設
2
c - b = 1, c + b = a
那麼可以解得
2 2
a - 1 a + 1
b = ------ , c = ------
2 2
讓a跑遍所有奇數,可以得到一批畢氏三元組(由此可知存在無限個畢氏三元組)
2
但是剛剛假設太強,c - b 與 c + b 不一定正好是 1 與 a
所以有以下情況:
如果a是質數,那只能用剛剛分解的方式去設定c - b 與 c + b
如果a是合數,例如 a = pq, 其中 p 與 q 都是奇數,此時可設 q ≦ p
那麼
2 2 2
a = p q
當 p = q 時,如果用原來的方式設定c - b 與 c + b,那只會得到 b = 0 的結果
(網站只說不失一般性可設 p > q,這裡我有疑問)
我想,如果 p = q 是質數,那就只能用一開始的方式設定c - b 與 c + b
而當 q < p 時,
可設
2 2
c - b = q , c + b = p
解得
2 2 2 2
p - q p + q
b = ------ , c = -------
2 2
2 2
但是 a 也有其他分解方式,例如 q * qp
但這樣算出來的結果與一開始假設 gcd = 1 矛盾
我想問的是,根據上面這樣的討論,我是不是可以宣稱:
2 2 2
設正整數x, y, z滿足 x + y = z , 且gcd(x, y, z) = 1, x是奇數,則(x, y, z)必可
表示成
2 2 2 2
p - q p + q
(pq, ------- , -------)
2 2
其中p與q是兩互質正整數,且 p > q
抱歉問題寫很長,如有不清楚的地方麻煩說一下,謝謝。
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.126.199.100
推 justinj :一般來說...通常會表示成這樣(m^2-n^2,2mn,m^2+n^2) 08/06 19:32
→ justinj :對於任意的m,n互質... 08/06 19:33
→ justinj :還有m>n 08/06 19:33
→ justinj :因為你最後一句的寫法只能左=>右..不能右=>左 08/06 19:34
謝謝j大的指點,首先
如果是右到左的話,是不是把
2 2 2 2
p - q p + q
(pq, ------- , -------)
2 2
2 2 2
代到 a + b = c ,驗證是否合式子就行了呢?
我代進去是一定合啦。
另外,我就是覺得一般的式子推倒想法沒那麼直接,所以我才找了這個想法
不好意思,可以麻煩再幫我看看嗎?謝謝
※ 編輯: pentiumevo 來自: 111.243.180.34 (08/06 20:01)
推 armopen :數學女孩是給完全不懂數學的人念的人,照理已相當白話 08/06 21:47
推 justinj :只是很簡單的道理而已..右=>左缺了p,q要奇數 08/07 09:09
→ justinj :我再補一句好了...其中有一個是這樣的..b,c互質.. 08/07 09:11
→ justinj :c-b,c+b的最大公因數不是1就是2..這樣你會比較好想點 08/07 09:11
→ justinj :(ps.如果c,b的奇偶性不一樣的話)..那2個互質... 08/07 09:13
→ justinj :所以a^2=fg..f,g互質..那f,g只能為平方數 08/07 09:13