作者znmkhxrw (QQ)
看板Math
標題Re: [微積] 兩題定積分的極限
時間Wed Aug 15 17:36:57 2012
※ 引述《ChocoRs (巧克先生)》之銘言:
: 2.
: 2x 2c
: 2t / e \ e
: lim ∫ |---| dx 我用積分均值定理=> lim -- * t = 0 ,c在(t,2t)
: t→0 t | x | t→0 c
: \ /
: ~
: 可是答案是ln 2 , 不知道問題出在哪
: 以上,麻煩大家咧~
1.for t > 0
n (2x)^k
f_n(x) = Σ ──── converges to e^(2x) uniformly on [t,2t]
k=0 k!
so f_n(x)/x conv. to [e^(2x)]/x uniformly on [t,2t]
2t 2t
by theorem, ∫ [e^(2x)]/x dx = lim ∫ f_n(x)/x dx ---(●)
t n→∞ t
2t 2t
Now calculating lim ∫ [e^(2x)]/x dx = lim lim ∫ f_n(x)/x dx
t→0 t t→0 n→∞ t
if lim , lim can exchange, done.
t→0 n→∞
(Theorem:for g_n:(0,1] → R
if (1) for each n, lim g_n(t) exists
t→0
(2) for each t, lim g_n(t) exists uniformly
n→∞
then lim lim g_n(x) exists
n→∞ t→0
and equals to lim lim g_n(x) )
t→0 n→∞
2t
by the theorem above , we need to show that g_n(t) = ∫ f_n(x)/x dx conv. uni.
t
2t
Observe that g_n(t) conv. to g(t) = ∫ [e^(2x)]/x dx by(●)
t
and f_n(x) conv. to e^(2x) uni. on [0,2]
so take sufficient N, │f_n(x) - e^(2x)│< ε , for all x€[0,2]
Now estimating │g_n(t) - g(t)│ , t€(0,1]
2t
=│∫ f_n(x)/x - [e^(2x)]/x dx│
t
2t │f_n(x) - e^(2x)│
≦∫ ────────── dx
t x
≦ ε* ln2 , when n≧N
so g_n(t) conv. to g(t) uniformly.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 1.171.12.77
→ znmkhxrw :這只證明t→0+的情況 0-類似 故得證 08/15 17:37
※ 編輯: znmkhxrw 來自: 1.171.12.77 (08/15 17:38)
→ ntust661 :我想問 這題怎麼會有個非零的解@@ 08/15 17:42
→ suhorng :因為分母的 1/x 在靠近 0 的地方的關係吧? 08/15 17:48
推 jacky7987 :你可以先無恥假設都可以交換 你就會發現有數字的地方 08/15 18:21
→ jacky7987 :照著Z大說得展開 然後交換 08/15 18:22
→ jacky7987 :來自於lim_{t->0}\int_t^{2t}1/xdx 08/15 18:22
推 ChocoRs :謝謝Z大 好長一串 我再慢慢看懂他 08/15 18:28
推 jacky7987 :而且從Z大的證明裡面最後估計就可以看到 08/15 18:29
→ jacky7987 :f_n和e^2x是靠近的 所以來值的來源就來自於1/x 08/15 18:29