推 Sylow :Thanks !! 08/17 22:05
※ 引述《Sylow (lavish)》之銘言:
: 填充題
: x,y,z 為實數滿足
: 1/x + 1/(y+z) = 1/3
: 1/y + 1/(z+x) = 1/4
: 1/z + 1/(x+y) = 1/5
: 求 3x+2y+z = ?
: ----------------------------
: 做了一些嘗試,還是沒做出來 = =
: 有做到 3x+2y+z= 3xyz/xy+yz+xz 不曉得有沒有用。
(x+y+z)/[x(y+z)] = 1/3
(x+y+z)/[y(z+x)] = 1/4
(x+y+z)/[z(x+y)] = 1/5
x(y+z) : y(z+x) : z(x+y) = 3 : 4 : 5 = 3r : 4r : 5r
2(xy+xz+yz) = 12r => xy+xz+yz = 6r
=> yz = 3r => x : y = 2 : 3
xz = 2r => y : z = 1 : 2 => x : y : z = 2 : 3 : 6
xy = r = 2t : 3t : 6t
1/(2t) + 1/(3t+6t) = 1/3 => (11/18t) = 1/3 => t = 11/6
3x + 2y + z = 3*2*11/6 + 2*3*11/6 + 1*6*11/6 = 33
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 111.252.200.69
※ 編輯: mack 來自: 111.252.200.69 (08/17 21:06)