→ dramatic0306:感謝~ 08/30 03:14
設數列 〈An〉 滿足
A_(n+1) = 1 / (A_n) +1 (分母是 A_n + 1)
n是正整數
A_1 = 6
求
A_2011 - A_2010 等於多少
Let a_n + a_{n+1} = a_{n+2}, n=0,1,2,3,....
and a0=6, a1=1
then
a0=6, a1=1, a2=7, a3=8, a4=15, a5=23, a6=38, a7=61,....
then
A_n = a_{n-1}/a_n
we can easily prove that
(a_k)^2 - a_{k-1} * a_{k+1} = 41 for k is even
-41 for k is odd
A_{n+1} - A_n = (a_n^2 - a_{n-1}*a_{n+1})/(a_n * a_{n+1})
= 41/(a_n*a_{n+1}) for n is even
= -41/(a_n*a_{n+1}) for n is odd
however, f1=1, f2=1, f3=2, f4=3, f5=5, f6=8, ....
denote b_n = a_n - f_n
then b1=0, b2=6, b3=6, b4=12, b5=18,.....
that is, b_n = 6 f_{n-1}
hence, a_n = 6 f_{n-1} + f_n
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 27.147.57.77
※ 編輯: JohnMash 來自: 27.147.57.77 (08/28 03:00)