看板 Math 關於我們 聯絡資訊
※ 引述《alfadick (悟道修行者)》之銘言: : 問 |x-1| + 2|x-2| + 3|x-3| + ... + 10|x-10| 有最小值時 x 為何? S = |x-1| + 2|x-2| + 3|x-3| + ... + 10|x-10| Assume k <= x <= k+1 then S = (x-1)+...+k(x-k)+(k+1)(k+1-x)+...+10(10-x) = ax+b where a = (1+2+...+k) - [(k+1)+(k+2)+...10] = -(1+2+...+10) + 2(1+2+...+k) = k^2 + k -55 b = -(1+2^2+...+k^2) + [(k+1)^2+...+10^2] = (1+2^2+...+10^2) - 2(1+2^2+...+k^2) = 385 - k(k+1)(2k+1)/3 (i) a < 0 iff k <=6, then min S occurs at x = k+1 min S = (k+1)(k^2+k-55) + 385 -k(k+1)(2k+1)/3 3 min S = k^3+3*k^2-163*k+990 = f(k) f'(k) = 3k^2 + 6k -163 f'(k) = 0 at k~-8.44,+6.44 hence, 3 min S = f(6) = 336, min S = 112 at x=k+1=7 (ii) a > 0 iff k >= 7, then min S occurs at x = k min S = k(k^2+k-55) + 385 -k(k+1)(2k+1)/3 3 min S = k^3 - 166k + 1155 = h(k) h'(k) = 3k^2 - 166 h'(k) = 0 occurs at k~-7.44,+7.44 h(7) = 336, h(8) = 339, min S = 112 at x=k=7 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 27.147.57.77 ※ 編輯: JohnMash 來自: 27.147.57.77 (09/07 10:44)