※ 引述《gagaRicky (Ricky)》之銘言:
: 一個二次函數
: y=f(x)=ax^2+bx+c
: 過(1,0)且a<0
: 對稱軸介於0~1/2
: 且f(-1/2)<0 c>0
: 問 2b^2+ac的正負
f(1)=a+b+c=0,b=-a-c
f(-1/2)=(1/4)a-(1/2)b+c<0,a-2b+4c<0,將b=-a-c代入
a+2a+2c+4c<0,3a+6c<0,a+2c<0
則 2b^2+ac = 2*(-a-c)^2 + ac = 2a^2 + 5ac +2c^2 = (a+2c)(2a+c)
因為 a+2c<0,a<0,c>0,所以 a+2c+a-c < a+2c < 0
所以 2a+c<0
故 2b^2+ac = (a+2c)(2a+c) > 0
: 另外問一題
: x=4^1/3 +2^1/3 求滿足x的最低整係數多項式
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.40.121.61