看板 Math 關於我們 聯絡資訊
遇到一個問題卡住了 Suppose we have a m x n grid graph V = {v_ij} where i=1,...,m, j=1,...,n and E = { (v_ij,v_i'j) wherever i'-i=1 }∪{ (v_ij,v_ij') wherever j'-j=1 } Suppose m,n are even, m < n How many vertices should we remove (if we remove a vertice, we also remove all edges incident to it as well) so that the remaining graph has no cycle? Find the least number. 請問這題該如何下手呢? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 128.12.24.136 ※ 編輯: recorriendo 來自: 128.12.24.136 (10/28 08:36) ※ 編輯: recorriendo 來自: 128.12.24.136 (10/28 08:36)
walkwall :直覺應該是(mn-m-n)/2+1 10/28 09:00
arthurduh1 :no cycle => 剩下edge數 < 剩下vertex數-1 10/28 12:08
arthurduh1 :如此可得下界 上界的話試著構造即可 10/28 12:08
agga :walkwall, 3*5只要3個點就好 10/29 09:59
agga :比較像是[(mn-m-n)/3] 10/29 09:59
agga :剛的是取celing 10/29 09:59