作者pop10353 (卡卡:目)
看板Math
標題[分析] 一題(outer measure)
時間Sun Nov 4 16:08:55 2012
Q:
Show that if a set E has positive outer measure,then there is a bounded
subset of E that also has positive outer measure.
<pf>
Let In= [n,n+1] ,for each n in Ζ.
then E= ∪(E∩In).
By countable subadditivity that
0< m*(E)< Σ m*(E∩In)
=
Thus,at least one of (E∩In) has positive outer measure.
It is bounded (subset of In) and is a subset
of E, so it is our desired set.
這是解法 ,應該是沒甚麼問題
但有疑問 如果這題我想要用 ~q -> ~p
那命題要怎麼改
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 124.9.204.94
推 znmkhxrw :假設不存在有界且正外測度的子集 => 有界的子集都是 11/04 17:55
→ znmkhxrw :零測度 => 矛盾! 11/04 17:55
→ znmkhxrw :(這邊子集都是指E的子集) 11/04 17:55
→ pop10353 :請問哪裡矛盾!?!?! 11/04 19:31
→ znmkhxrw :0< m*(E)< Σ m*(E∩In) 阿 11/04 22:07
→ pop10353 :喔喔喔 可是ZNM大會錯意了 我是想要把p->q改成 11/04 22:16
→ pop10353 :~q->~p 而不是 p->~q 11/04 22:17