看板 Math 關於我們 聯絡資訊
Q: Show that if a set E has positive outer measure,then there is a bounded subset of E that also has positive outer measure. <pf> Let In= [n,n+1] ,for each n in Ζ. then E= ∪(E∩In). By countable subadditivity that 0< m*(E)< Σ m*(E∩In) = Thus,at least one of (E∩In) has positive outer measure. It is bounded (subset of In) and is a subset of E, so it is our desired set. 這是解法 ,應該是沒甚麼問題 但有疑問 如果這題我想要用 ~q -> ~p 那命題要怎麼改 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 124.9.204.94
znmkhxrw :假設不存在有界且正外測度的子集 => 有界的子集都是 11/04 17:55
znmkhxrw :零測度 => 矛盾! 11/04 17:55
znmkhxrw :(這邊子集都是指E的子集) 11/04 17:55
pop10353 :請問哪裡矛盾!?!?! 11/04 19:31
znmkhxrw :0< m*(E)< Σ m*(E∩In) 阿 11/04 22:07
pop10353 :喔喔喔 可是ZNM大會錯意了 我是想要把p->q改成 11/04 22:16
pop10353 :~q->~p 而不是 p->~q 11/04 22:17