看板 Math 關於我們 聯絡資訊
又來麻煩大家了... Let V be the vector space, under the usual operations, of real polynomials that are of degree at most 3. Let W be the subspace of all polynomials p(x) in V such that P(0)=P(1)=P(-1)=0. Then dim V + dim W is 5. 我知道dim V =4 b/c basis for V is {1,x,x^2, x^3} T:W->R(real numbers) nullity(T)=3 b/c P(0)=P(1)=P(-1)=0 rank(T)=0 b/c T把所有W裡面的多項式送到0 那這樣dim W是4, total is 9. 為什麼呢>"< -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 108.3.154.49
LPH66 :W 的 basis 是 {x(x+1)(x-1)} 11/06 12:47
ssss50201 :但是從答案推 dim(W)=1 耶~ 頗確定dim(V)=4的.... 11/06 13:16
ChocoRs :1f答案的dim不就等於1嗎,原PO的問題是? 11/06 15:13
k6416337 :原PO解釋一下你怎推得nullity(T)=3的? 11/06 15:15
ssss50201 :經樓上的提醒我想了一下 nullity=1, 11/06 20:38
ssss50201 :從P(0)=P(1)=P(-1)=0.知道kenel space有0,-1,1 11/06 20:39
ssss50201 :所以dim[kernel]=1, 因為rank=0, 所以dim(W)=1 11/06 20:40
ssss50201 :是這樣嗎@_@ 11/06 20:40
ssss50201 :kernel={0,-1,1}=span{1},故nullity=1 11/06 20:42