作者ssss50201 (ssss)
看板Math
標題[代數] order of a group
時間Tue Nov 6 12:35:57 2012
需要幫忙確認做法正確~~ Thanks :)
If the finite group G contains a subgroup of order 7
but no element (other than the identity) is its own inverse,
then the order of G could be
A.27 B.28 C.35 D.37 E.42
By Larange, A,D 刪掉
no element (other than the identity) is its own inverse
這句話其實有點不懂
意思是 a =! a' for all a belongs to S\{identity} 嗎?
ps.這邊我讓S表示subgroup of G. a'表示inverse of a
如果意思是這樣,從這個條件可以得知G has no subgroup of order 2
(因為如果a = a', 那aa=aa'=identity, subgroup of order 2)
然後B,E就被刪掉
答案剩下C
ps. 其實關於order of an element & order of a group我有點困惑
order of a group 是指cardinality
order of an element 是指最小的m, st a^m=identity.
但有時候order of an element的定義似乎又可以用來定義order of a group
是不是我弄混了什麼事呢?
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 108.3.154.49
推 APM99 :最後倒數第二行 是因為那個group是由那個element 11/06 12:53
→ APM99 :生成的. 11/06 12:53
→ ssss50201 :所以 當order of element被用來當作是order of group 11/06 13:04
→ ssss50201 :時,前提是該element生成了G囉? 11/06 13:05
→ ssss50201 :如果是的話那我的做法就不對了@_@ 11/06 13:17