看板 Math 關於我們 聯絡資訊
需要幫忙確認做法正確~~ Thanks :) If the finite group G contains a subgroup of order 7 but no element (other than the identity) is its own inverse, then the order of G could be A.27 B.28 C.35 D.37 E.42 By Larange, A,D 刪掉 no element (other than the identity) is its own inverse 這句話其實有點不懂 意思是 a =! a' for all a belongs to S\{identity} 嗎? ps.這邊我讓S表示subgroup of G. a'表示inverse of a 如果意思是這樣,從這個條件可以得知G has no subgroup of order 2 (因為如果a = a', 那aa=aa'=identity, subgroup of order 2) 然後B,E就被刪掉 答案剩下C ps. 其實關於order of an element & order of a group我有點困惑 order of a group 是指cardinality order of an element 是指最小的m, st a^m=identity. 但有時候order of an element的定義似乎又可以用來定義order of a group 是不是我弄混了什麼事呢? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 108.3.154.49
APM99 :最後倒數第二行 是因為那個group是由那個element 11/06 12:53
APM99 :生成的. 11/06 12:53
ssss50201 :所以 當order of element被用來當作是order of group 11/06 13:04
ssss50201 :時,前提是該element生成了G囉? 11/06 13:05
ssss50201 :如果是的話那我的做法就不對了@_@ 11/06 13:17