作者pop10353 (卡卡:目)
看板Math
標題[微積] 高微 about lim sup Yn
時間Thu Nov 8 02:39:51 2012
Q:
Let Xn be a bounded sequence of real numbers and
Yn= [(-1)^n]Xn.
Show that lim sup Yn ≦ lim sup |Xn|.
<sol>
Since Yn= [(-1)^n]Xn => Yn= ±|Xn|
=> Yn≦|Xn| for all n in N
=> So Yn is bounded sequence in R.
Let b= lim sup Yn. Then there is a subseqence Yn_k converge to b.
=> For any ε>0 ,then b-ε < Yn_k ≦ |Xn_k| for the large enough k.
=> Xn is bounded ,then |Xn| is bounded.
*=> Then |Xn_k| is bouned and must have a cluster point,and
they must all as large as b-ε.
*=> Since ε is arbitrary, they must all as large as b.
*=> So lim sup Yn = b ≦ lim sup |Xn|.
想請問打*號的最後幾句 是怎麼推過去的??
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 124.9.202.243
推 chy1010 :Yn_k 收斂至 b, |Xn_k| 是 Yn_k 取絕對值 11/08 07:51
→ chy1010 :當然會有子數列收斂 (have a cluster point) 11/08 07:52
→ chy1010 :第二個, \epsilon 可以 take limit 到 0, 保持不等號 11/08 07:52
→ chy1010 :就會有第三個 * 11/08 07:53
推 james2009 :柯西 11/08 18:26
→ pop10353 :請樓上大大 開示@@ 11/08 21:41