看板 Math 關於我們 聯絡資訊
Q: Let Xn be a bounded sequence of real numbers and Yn= [(-1)^n]Xn. Show that lim sup Yn ≦ lim sup |Xn|. <sol> Since Yn= [(-1)^n]Xn => Yn= ±|Xn| => Yn≦|Xn| for all n in N => So Yn is bounded sequence in R. Let b= lim sup Yn. Then there is a subseqence Yn_k converge to b. => For any ε>0 ,then b-ε < Yn_k ≦ |Xn_k| for the large enough k. => Xn is bounded ,then |Xn| is bounded. *=> Then |Xn_k| is bouned and must have a cluster point,and they must all as large as b-ε. *=> Since ε is arbitrary, they must all as large as b. *=> So lim sup Yn = b ≦ lim sup |Xn|. 想請問打*號的最後幾句 是怎麼推過去的?? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 124.9.202.243
chy1010 :Yn_k 收斂至 b, |Xn_k| 是 Yn_k 取絕對值 11/08 07:51
chy1010 :當然會有子數列收斂 (have a cluster point) 11/08 07:52
chy1010 :第二個, \epsilon 可以 take limit 到 0, 保持不等號 11/08 07:52
chy1010 :就會有第三個 * 11/08 07:53
james2009 :柯西 11/08 18:26
pop10353 :請樓上大大 開示@@ 11/08 21:41