看板 Math 關於我們 聯絡資訊
※ 引述《ma4wanderer (台師怪客)》之銘言: : 這題是說ring R 的left ideal 只有R跟(0) : 則 : 1.R 是division ring : 或 : 2.has p elements(p is a prime) and ab=0 for all a、b in R : 有個人跟我講考慮這個ideal {r in R| rR=0} : 可是除環的1不知怎麼弄出來 : 還有prime elements哪裡來 : @@ : 有請指點! 1. Ra is a left ideal = R or 0 2. {a| Ra=0} is a left ideal = R or 0 If R, then xy=0 for all x,y. left ideal = (normal) additive subgroup. => cyclic group of order p. If 0, then Ra=R for all a=/=0 3.For a=/=0 {r|ra=0} is a left ideal = R or 0 If R, then Ra = 0, impossible So ra=0 => r=0 conclusion: xy=0 => x=0 or y=0, left and right cancellations. 4. For a=/=0, Ra=R, so there exists e_a, e_a a=a For any b, b e_a a = ba, so b e_a = b by cancellation. Now pick a, b, c=/=0, then b e_a = b = be_c, so e_a = e_c by cancellation. Denote the common element e_a by e, the left and right identity. 5. For a=/=0, Ra=R, so there exists a', a'a=e Then a'aa' =ea' = a'e so aa'=e by cancellation. And a' is the multiplicative inverse of a. -- r=e^theta 即使有改變,我始終如一。 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 219.84.3.42
yusd24 :讓我膜拜一下 11/09 20:17
chy1010 : 膜拜一下 11/09 20:18
ma4wanderer :"cyclic" group of order "p" 這邊看無QQ 11/09 20:29
bineapple :Sylow's first theorem 11/09 21:47
ma4wanderer :我好像catch到了 11/09 22:23
ma4wanderer :太神奇了QQ 11/10 02:10