看板 Math 關於我們 聯絡資訊
The sequence {Zn} is convergent iff. given any ε>0, there exists an integer N=N(ε)>0 such that |Zm-Zn|<ε for all m,n>N 以上是定理敘述, 由左到右的證明我OK, 但是由右到左的證明我把課本上的 最後一部分證明改了一點,不知道有沒有寫錯, 請問有沒有好心人願意幫我看 前半段和原始證明一樣 Proof: Conversely, Suppose the seq. Zn satisfies the Cauchy convergence criterion. Choosing ε=1, there exists an integer N(1)>0 such that |Zn-Zmo|<1 for all mo>N(1). Then |Zn|=|Zn-Zmo+Zmo|≦|Zn-Zmo|+|Zmo|<1+|Zmo| Let M=max{|Z1|, |Z2|,..,|Zmo|,1+|Zmo|} Then |Zn|≦M. Thus, {Zn} is a bounded seq.. By the Bolzano-Weierstrass Thm, {Zn} has at least one limit point, 註:極限點的定義 α is a limit point of a seq. {Zn} if for anyε>0, |Zn-α|<ε. 從這裡開始, 我要證明{Zn}只有唯一一個極限點 Let α and β are two limit points of two subseq.{Zni}, {Zmj} of {Zn} such that lim Zni=α lim Zmj=β. Then for any ε>0 there exists an integer N(ε/3)>0 such that |α-β|=|α-Zni+Zni+Zmj-β-Zmj|≦|α-Zni|+|Zni-Zmj|+|Zmj-β|<ε/3+ε/3+ε/3=ε. we have α=β. 接著我要證明如果一個數列只有一個極限點, 那此數列為收斂數列. Claim: If a seq. has only one limit point then the limit of the seq. exists. Proof: Let α be the limit point of {Zn}. Then for any ε>0 , |Zn-α|<ε, for all integers n. Thus, for any ε>0 , there is an integer N(ε)>0 such that |Zn-α|<ε, for all n>N(ε). We have lim Zn=α, that is the seq. converges. 證明完畢 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 123.193.56.234 ※ 編輯: rebe212296 來自: 123.193.56.234 (11/15 22:49) ※ 編輯: rebe212296 來自: 123.193.56.234 (11/16 00:53) ※ 編輯: rebe212296 來自: 123.193.56.234 (11/16 01:05)