看板 Math 關於我們 聯絡資訊
※ 引述《kkk3388 (haha)》之銘言: : 我想三天了 : 拜託版上高手 解答一下 : (1){g_n} be integrable on E and positive , : which converges to an integrable function g : (2){f_n} be measurable functions on E such that |f_n|<g_n, : and fn converges to f. : If lim Sgn = Sg, then Sf=limSfn : n->infinity ~(->這個符號是積分) : <hint>use fatou`s lemma : 這是中山大學2011博班考題 : 萬分感激 謝謝 │f_n│< g_n => -g_n < f_n < g_n => { 0 < f_n + g_n < 2g_n ---(1) { 0 > f_n - g_n > -2g_n ---(2) by fatou's lemma for (1), ∫liminf (f_n + g_n) ≦ liminf∫(f_n + g_n) ---(1') ~~~~~~~~~~~~~~~~~~~~ ↓(equals) ∫(f + g) for (2), ∫limsup (f_n - g_n) ≧ limsup∫(f_n - g_n) ---(2') ~~~~~~~~~~~~~~~~~~~~ ↓(equals) ∫(f - g) since ∫f_n is bounded by <lemma>(see p.s.) (1') = liminf∫(f_n + g_n) = (liminf∫f_n) +∫g (2') = limsup∫(f_n - g_n) = (limsup∫f_n) -∫g Hence ∫(f + g) ≦ (liminf∫f_n) +∫g =>∫f ≦ liminf∫f_n and ∫(f - g) ≧ (limsup∫f_n) - ∫g =>∫f ≧ limsup∫f_n Hence lim∫f_n = ∫f # <lemma> if a_n is bounded, b_n is convergent sequence with finite value L then liminf(a_n + b_n) = (liminf a_n) + L and limsup(a_n + b_n) = (limsup a_n) + L ----------------------------------------------------- 有錯請指證~ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 1.171.8.55 ※ 編輯: znmkhxrw 來自: 1.171.8.55 (11/19 18:50)
jacky7987 :長的蠻像LDCT的XD 11/19 20:51
kkk3388 :了解了 謝謝 感恩 11/19 21:20
znmkhxrw :對阿~一開始想去湊有沒有一個general的g去壓 11/19 22:48
znmkhxrw :不過失敗QQ 後來拆拆看就有了XD 11/19 22:48
※ 編輯: znmkhxrw 來自: 1.171.7.198 (11/27 00:59)