看板 Math 關於我們 聯絡資訊
※ 引述《YAchine (牙籤)》之銘言: : Z1,Z2屬於C : |Z1|=|Z1+Z2|=3,|Z1-Z2|=3(3)^0.5 : __ __ : 求log(3)|(Z1Z2)^2000+(Z1Z2)^2000|= : 目前只能確定|Z2|=3 : 可利用題目給的條件建構平行四邊形 角度是60 120 : 不知道是不是要從隸美佛切入? (Z1+Z2)˙(Z1-Z2) = 0 = Z1^2 - Z1Z2 + Z2Z1 - Z2^2 = |Z1|^2 - |Z2|^2 => |Z2| = 3 (Z1+Z2)˙(Z1+Z2) = |Z1+Z2|^2*cos0°= 3^2 = Z1^2 + Z1Z2 + Z2Z1 + Z2^2 = |Z1|^2 + 2|Z1||Z2|cosθ + |Z2|^2 => cosθ = -1/2 => θ=120° => 假設 Z1 = 3 + 0i => Z2 = 3/2 + 3√3/2 i __ __ log(3)|(Z1Z2)^2000+(Z1Z2)^2000| ____ = log(3)|(Z1Z2)^2000+(Z1Z2)^2000| = log(3)|[3^2(1/2 - √3/2 i)]^2000+[3^2(1/2 + √3/2 i)]^2000| = log(3)|[3^2(cos60°- sin60°i)]^2000+[3^2(cos60°- sin60°i)]^2000| = log(3)|3^4000(cos12000°- sin12000°i)+3^4000(cos12000°- sin12000°i)| = log(3)|3^4000*cos120°+3^4000*cos120°| = log(3)3^4000 = 4000 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 1.170.216.227