看板 Math 關於我們 聯絡資訊
※ 引述《tokyo291 (工口工口)》之銘言: : 62/(a+b)+152/(a+3b)+242/(a+5b)=27 : 62/(a+b)+3*152/(a+3b)+5*242/(a+5b)=81 : 請問這種形式有甚麼方式比較好解嗎? : 我通分完之後一直卡在次方太高無法消掉... 62/(a+b)+ 152/(a+3b)+ 242/(a+5b) = 27...(1) 62/(a+b)+3*152/(a+3b)+5*242/(a+5b) = 81...(2) (2)-(1) = 2*152/(a+3b)+4*242/(a+5b) = 54...(3) (3)/2 = 152/(a+3b)+2*242/(a+5b) = 27...(4) (1)=(4) => 62/(a+b) = 242/(a+5b) => 31/(a+b) = 121/(a+5b) => 121a+121b = 31a+155b => 90a = 34b => a = 34b/90 => 62/(124b/90) + 152/(304b/90) + 242/(484b/90) = 27 => 45/b + 45/b + 45/b = 27 => 135/b = 27 => b = 135/27 = 5 => a = 34*5/90 = 17/9 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 1.170.216.227