看板 Math 關於我們 聯絡資訊
各位大大好~ 有2題問題不太懂因此尋求各位的幫忙 問題1 The service times at teller windows in a bank were found to follow an exponential distribution with a mean of 3.4 minutes. A customer arrives at a window at 4:00 p.m. a) Find the probability that he will still be there at 4:02 p.m. b) Find the probability that he will still be there at 4:04 p.m. given that he was there at 4:02 p.m. 問題2 Let X be an exponential random variable with mean θ. Show that E(X k =>k為上標 ) = k!θk=>後面k為上標 Hint: Make use of the gamma function. 此題我的方法是像求E(X^2),但道一半就亂掉了@@ 求祥解 以上先謝謝大家!!! 感謝! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.246.199.134
KAINTS :你第一題問題是? 11/27 22:59
KAINTS :第二題令x/⊙=u(手機打不出來代替一下),就可以解了 11/27 23:02
starsky822 :不知 從何動手@@" 11/27 23:30
KAINTS :幾點到就當0阿,第二題用無記憶觀念解 11/27 23:32
goshfju :2.就積分硬幹阿 11/28 02:38
goshfju : E(X^k)=∫x^k*1/θ*e^(-x/θ)dx 11/28 02:39
goshfju : =(1/θ)∫x^(k+1-1)*e^(-x/θ)dx 11/28 02:40
goshfju : =(1/θ)*Γ(k+1)*θ^(k+1) 11/28 02:41
goshfju : =k!*θ^k 11/28 02:41
KAINTS :推文中第四行指的都是問題1喔 11/28 09:01
starsky822 :ok!感謝K大和g大,謝謝!!! 11/28 11:05
sneak : 不知 從何動手@@" https://muxiv.com 08/13 17:16
sneak : 推文中第四行指的都是問 https://daxiv.com 09/17 15:11
sneak : ok!感謝K大和g大, https://daxiv.com 11/10 11:04
sneak : //daxiv.com http://yofuk.com 01/02 15:09