看板 Math 關於我們 聯絡資訊
※ 引述《Taeyeon20 (ygyhjddsfdsfdsfdsgvsdv)》之銘言: : Let A be a 2x2 skew-Hermitian matrix. Prove that if A^n=I for some n : positive integer, then A^4=I. : 不知道如何證 希望有人教我 謝謝 A = ai b+ci -b+ci di where a,b,c,d are real characteristic eq. x^2 - (a+d)i x + (-ad+b^2+c^2) = 0 denote i x = u then u^2 + (a+d) u + (ad-b^2-c^2) = 0 Δ = (a+d)^2 - 4(ad-b^2-c^2) = (a-d)^2 + 4b^2 + 4c^2 (i) Δ=0, then a=d, b=0, c=0 and A^n = I, then a=d=1,-1, then A^4=I (ii) Δ>0, u has two distinct real roots, α,β x = -iα, -iβ because x^n - 1 is divided by characteristic polynomial then {α,β} = {1, -1} then x^2 + 1 = 0, A^2 + I = 0 hence, A^4 = I -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 27.147.57.77
Taeyeon20 :謝謝 11/28 11:38
Taeyeon20 :感謝!! 11/28 11:39
Taeyeon20 :用p(A)v=p(eigenvalue)v想也可 v非零向量 A2階方陣 11/28 12:00
Taeyeon20 :eigenvalue是A的eigenvalue 11/28 12:01
Taeyeon20 :然後利用A矩陣的eigenvale 是pure imaginary number 11/28 12:02