看板 Math 關於我們 聯絡資訊
因為用手機發文,所以排版不太好,還請各位多多包涵... 最近讀到 lebesgue integrability and Riemann integrable 有個範例是: The function f:(0,1) -> R defined by f(x) = sin(1/x) Is bounded and continuous, and therefore integrable, On (0.1). But it is not piecewise continuous because f(0+) does not exist. 我覺得在x->0+的跳動很大,不知會是靠近1還是-1,所以總覺得沒辦法積分,不知道這跟下列這段有沒有關,因為我看不太懂 the simple criterion for integrability given by Lebesgue: A subset of R is said to have measure zero if and only if it can be enclosed in a finite or infinite sequence of open intervals whose combined total length - the sum of a finite or infinite series whose terms are the lengths of the individual intervals - is arbitrarily small, that is, smaller than any press signed positive number. Then Legesgue showed that f is Riemann integrable on (a,b) if and only if the set of points where f is discontinuous has measure zero. 麻煩各位了~謝謝~ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 49.215.39.234
znmkhxrw :一維的黎曼積分是定義在閉區間,勒貝格積分可以定義 12/04 19:12
znmkhxrw :在任何可測集與可測函數 12/04 19:13
znmkhxrw :你這個sin(1/x)自己在0那點定義一個值 則不連續點只 12/04 19:13
znmkhxrw :有{0},測度0, 且sin(1/x)在[0,1]有界 所以黎曼可積 12/04 19:14
yhliu :引用 Lebesgue 的定理當然是最直接. 不過, 由積分的 12/05 09:40
yhliu :定義加上 sin(1/x) 在任何不含 0 的閉區間 [a,b], 12/05 09:40
yhliu :0<a<b, 連續, 也是很容易的, 而且也能說明為何在靠近 12/05 09:41
yhliu :0 時 sin(1/x) 的無限振盪不影響其可積性. 12/05 09:42
Qmmmmnn :謝謝樓上各位的回答.... 12/22 13:38