推 herstein :有請SFLY大師 12/08 05:29
Let E be an elliptic curve defined over Q, and let p be a large prime, in
particular, large enough so that reducing the equation y^2=x^3+ax+b modulo
p gives an elliptic curve over Fq. Show that
(a) if the cubic x^3+ax+b splits into linear factors modulo p, then E mod p
is not cyclic.
(b) if this cubic has a root modulo p, then the number N of elements on E
mod p is even.
我不是數學背景的...,所以有很多不懂
拜託指點一下,謝謝
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 180.43.116.181