看板 Math 關於我們 聯絡資訊
Let E be an elliptic curve defined over Q, and let p be a large prime, in particular, large enough so that reducing the equation y^2=x^3+ax+b modulo p gives an elliptic curve over Fq. Show that (a) if the cubic x^3+ax+b splits into linear factors modulo p, then E mod p is not cyclic. (b) if this cubic has a root modulo p, then the number N of elements on E mod p is even. 我不是數學背景的...,所以有很多不懂 拜託指點一下,謝謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 180.43.116.181
herstein :有請SFLY大師 12/08 05:29