作者Annihilator (> No LOVE (%))
看板Math
標題Re: [線代] 矩陣分裂的問題
時間Mon Dec 17 06:54:31 2012
※ 引述《rnf0 (rnf0)》之銘言:
: 大家好:
: 請問
: Let A^(2*2) = [2, 3, 1, 2] B^(2*2) = [2, 13, -1, 6]
: If AC + CA = B then C = ?
: 這種題目除了解 4*4 線性方程組以外,有比較聰明的做法嗎?
: 感謝!
令 AY = YD where Y=[y1,y2], D=[λ1,0 ; 0,λ2], Ay1=λ1y1, Ay2=λ2y2
則
By1 = ACy1 + CAy1 = ACy1 + λ1Cy1 = (A+λ1I)Cy1
By2 = ACy2 + CAy2 = ACy2 + λ2Cy2 = (A+λ2I)Cy2
因此
C = Z(Y^-1), where Z=[z1,z2], z1=[(A+λ1I)^-1]By1, z2=[(A+λ2I)^-1]By2
考慮 (A+λ1I)(A+λ2I) = 2(λ1+λ2)A = (2trA)A
得
(2trA)ACy1 = (A+λ1I)(A+λ2I)Cy1 = (A+λ2I)By1 = ABy1 + (detA/λ1)By1
(2trA)ACy2 = (A+λ1I)(A+λ2I)Cy2 = (A+λ1I)By2 = ABy2 + (detA/λ2)By2
合
(2trA)ACY = ABY + (detA)BY(D^-1)
(想到更好的)
考慮 A^2 = (trA)A - (detA)I, 則
ABA = A(AC+CA)A = (A^2)CA + AC(A^2) = (trA)ACA-(detA)CA + (trA)ACA-(detA)AC
= (2trA)ACA - (detA)B
因 A 可逆 且 trA 非零
故 1 detA
C = ----B + ----(A^-1)B(A^-1)
2trA 2trA
= (1/8)[2,13;-1,6] + (1/8)[2,-3;-1,2][2,13;-1,6][2,-3;-1,2]
= [1,1;-1,2]
--
~by Jackary P.~
--
推 rnf0 :感謝!! 想再請問一下,第一步的AY=YD是怎麼想到的? 12/17 13:16
推 LPH66 :就只是對角化而已 注意到 D 是 A 的對角化結果 12/17 13:43
→ LPH66 :y1 y2 就是分別對應 λ1 λ2 兩個特徵值的特徵向量 12/17 13:44
推 rnf0 :噢 我看懂了 謝謝樓上 12/17 13:58
※ 編輯: Annihilator 來自: 60.248.164.22 (12/17 14:20)
推 rnf0 :新的解法是怎麼想出來的呢@@? 太神來一筆了 12/17 18:35
推 rnf0 :瞭解了,是利用 A^2-tr(A)x+det(A)=0 12/17 19:10
→ Annihilator : det(A)I 12/17 21:39
→ Annihilator : A^2-tr(A)A+det(A)I=0 12/17 21:40
推 rnf0 :XD 打錯了 12/17 22:08