看板 Math 關於我們 聯絡資訊
※ 引述《lizzon (莉森)》之銘言: : Let h(x)=|x|. Show that : there is a sequence of polynomials {Pn} s.t. : Pn→h pointwise 小妹我參考樓上多位大大的方式,寫出以下推論,請各位高手幫小妹看有沒有錯 Let f is a continuous function on R By W.A.T, consider [-1,1], there is a sequence of poly. P s.t. for each ε>0 1,m |P (x)-f(x)|<ε for x£[-1,1] whenever m≧N for some N 1,m 1 1 ˙ ˙ ˙ (*) [-n,n], there is a sequence of poly. P s.t. for each ε>0 n,m |P (x)-f(x)|<ε for x£[-n,n] whenever m≧N for some N n,m n n ˙ ˙ ˙ Take P = P n n,Nn Claim: Pn→f pointwise on R  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ Given x£R and any ε>0 there is an integer n s.t. x£[-n,n] then we have |Pn(x)-f(x)| = |P (x)-f(x)|<ε (By (*)) n,Nn Hence Pn→f pointwise # -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.113.25.147 ※ 編輯: lizzon 來自: 220.132.36.153 (12/17 18:08)
znmkhxrw :你如何conclude的? 12/17 19:07
※ 編輯: lizzon 來自: 140.113.25.147 (12/17 22:08)
lizzon :從consider~claim之間的ε取成1/n 12/18 18:21