推 feit :拿你的 1+x*(d/dx)*y+1*y+(d/dx)*y = 0 再微一次 12/25 18:21
不好意思,小弟還是微不出來耶!
※ 編輯: pigheadthree 來自: 1.165.182.240 (12/25 18:32)
→ bbenson :同1F 把第一題答案再微一次 等號右邊有(d/dx)y再帶入 12/25 19:28
(d/dx)y = (-y-1) / (x+1)
[d^(2)/dx^(2)]y = {{[-(d/dx)y-0]*(x+1)}-1*(y-1)}/(x+1)^2
[d^(2)/dx^(2)]y = [-(d/dx)y*(x+1)-1*(y-1)]/(x+1)^2
[d^(2)/dx^(2)]y = {[(y+1)/(x+1)]*(x+1)}+(y+1)/(x+1)^2
[d^(2)/dx^(2)]y = 2(y+1)/(x+1)^2
總算解出來了!呼~~~~~~~~~~
※ 編輯: pigheadthree 來自: 1.165.182.240 (12/25 20:33)