看板 Math 關於我們 聯絡資訊
※ 引述《cnick (cnick)》之銘言: : 各位好 : 有一題數列求和問題想請教大家 : ___________________________________________________________________________ : 已知 a_1=2,點 (a_n,a_(n+1) ) 在函數f(x)=x^2+2x的圖像上,其中 n=1,2,3,… : 設 b_n=1/a_n +1/(a_n + 2 ), 試求數列{b_n}的前n項和S_n : 解答: 1-2/(3^(2^n )-1) : ____________________________________________________________________________ : 因為符號在這有點難打 : 所以也可以請看下列網址的word檔 : https://www.asuswebstorage.com/navigate/s/3247710444F74B42AB996BE60FD8196FY : 謝謝大家的回答 亦即a_(n+1) = (a_n)^2+2(a_n) = (a_n)(a_n +2) 倒數得1/a_(n+1) = 1/(a_n)(a_n +2) =[1/a_n - 1/(a_n +2)](1/2) 兩邊減1/a_n得1/a_(n+1) - 1/a_n = (-1/2)[1/a_n + 1/(a_n +2)] = (-1/2)(b_n) 則b_n = -2[1/a_(n+1) - 1/a_n] b_(n-1)=-2[1/a_n - 1/a_(n-1)] ... b_1 = -2[1/a_2 - 1/a_1] ------------------------------- 加總得S_n = (-2)[1/a_(n+1) - 1/a_1] 又a_(n+1) = (a_n)^2+2(a_n) = (a_n +1)^2-1 即a_(n+1)+1 =(a_n +1)^2 = [(a_(n-1)+1)^2]^2 = [a_(n-1)+1]^4 = ... = (a_1 +1)^(2^n) = 3^(2^n) 故S_n = (-2)[1/(3^(2^n)-1) - 1/2] = 1 -2/(3^(2n)-1) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 59.126.141.67
cnick :很感謝你的幫忙 我了解了 12/26 20:59