看板 Math 關於我們 聯絡資訊
1.The RANK rank(A) of a matrix A is the maximum number of linearly independent rows in A. (大寫的rank在原題目敘述中是斜體字,不知道為什麼要兩個rank) (a) Prove that for any m*n matrix A and any n*p matrix B, we have rank(AB)<=rank(B). (b) Prove that for any n*n matrix A and any n*p matrix B, if A is invertible then rank(AB)=rank(B). 2.Suppose M is an n*n matrix in which all entries are nonnegative and all column sums are 1. (a) Prove that 1 is an eigenvalue of M (b) Prove that for each eigenvalue λ of M, we have |λ|<=1. 這兩題想很久都想不太出來... -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.39.119.204
jacky7987 :rank(A)是符號 前面的RANK是英文 12/30 02:09
jacky7987 :(a)就照著定義數 12/30 02:10
jacky7987 :invertible就行完全獨獨立 12/30 02:10
jacky7987 :2.(a) 想一下A^T 和[1,...,1]這個向量 12/30 02:10