看板 Math 關於我們 聯絡資訊
※ 引述《jinnawang (新的開始)》之銘言: : (x-1/x-2)-(x-2/x-3)-(x-3/x-4)+(x-4/x-5)=0 : 請問大大們 : 除了通分 : 應該怎麼解呢? (x-1/x-2)-(x-2/x-3)-(x-3/x-4)+(x-4/x-5) = (1+ 1/x-2)-(1+ 1/x-3)-(1+ 1/x-4)+(1+ 1/x-5) = (1/x-2 + 1/x-5) - (1/x-3 + 1/x-4) = [(x-7)/(x-2)(x-5)] - [(x-7)/(x-3)(x-4)] = (x-7)[1/(x-2)(x-5) - 1/(x-3)(x-4)] = (x-7)[2/(x-2)(x-5)(x-3)(x-4)] = 2(x-7)/(x-2)(x-5)(x-3)(x-4) = 0 => x=7 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.252.210.6