看板 Math 關於我們 聯絡資訊
※ 引述《justin0602 (justin)》之銘言: : http://ppt.cc/8sHW : 謝謝 : 我對於拆項技巧很不知道怎麼無中生有 才能裂解成兩項 第一題 1/a1 = 1/2 =1-1/a1 故1/a1 + 1/a2 + 1/a3 + ... 1/an =(1-1/a1) + 1/a2 + 1/a3 + ... +1/an =1-(1/a1 - 1/a2) + 1/a3 + ... +1/an =1-(a2-a1)/a1a2 + 1/a3 + ... +1/an =1- 1/a1a2 + 1/a3 + ... + 1/an =1- (1/a1a2 - 1/a3) +... + 1/an =1- (a3-a1a2)/a1a2a3 + ...+ 1/an =1- 1/a1a2a3 + 1/a4 + ... + 1/an = ... = 1-1/(a1a2a3...an) < 1 第二題 倒數得1/a_(n+1) = (1+na_n)/a_n = 1/a_n +n 故1/a_2008 = 1/a_2007 +2007 1/a_2007 = 1/a_2006 +2006 ....... 1/a_1 = 1/a_0 +0 ---------------------------- 加總得1/a_2008 = 1/a_0 +(0+1+2+...+2007) =1 + 2007*2008/2 = 2015029 故a_2008= 1/2015029 第三題 由(n+2)/[n!+(n+1)!+(n+2)!] = (n+2)/ n![1+n+1+(n+1)(n+2)] = (n+2)/ n!*(n+2)^2 = 1/n!(n+2) = (n+1)/ n!(n+1)(n+2) = (n+1)/(n+2)! = [(n+2)-1]/(n+2)! = (n+2)/(n+2)! - 1/(n+2)! = 1/(n+1)! - 1/(n+2)! 故原式= (1/2!-1/3!) + (1/3!-1/4!) + ... + (1/2003! - 1/2004!) = 1/2! - 1/2004! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 59.126.141.67