看板 Math 關於我們 聯絡資訊
※ 引述《madduxwin (師出名門)》之銘言: : 指數不等式問題,請大家指教一下。 : 8^(x-1) + 7*2^(x-2) < = 1 + 7*2^(2x-3) : 試問:正整數解個數。 8^(x-1)+7*2^(x-2)<=1+7*2(2x-3) 8^(x-1) - 1 <= 7 * [2^(2x-3) - 2^(x-2)]......移項 8^(x-1) - 1 <= 7 * 2^(x-2) * [2^(x-1) - 1].....提出2^(x-2) 8^(x-1) - 1 <= 7/2 * 2^(x-1) * [2^(x-1) - 1]...把2^(x-2)變成2^(x-1) 前面要除以2 另2^(x-1)=a 則上式為 a^3 - 1 <= 7/2 * a * (a-1) 2(a^3) - 7(a^2) + 7a - 2 <=0 2(a^3 - 1) - 7a(a-1) <= 0 2(a-1)(a^2 + a + 1) - 7a(a-1) <= 0 (a-1)(2a^2 + 2a + 2 - 7a) <= 0 (a-1)(2a^2 - 5a + 2) <= 0 (a-1)(2a-1)(a-2) <= 0 - + - + ----------|-------|--------------|---------------數線 1/2 1 2 可得知 a <= 1/2 或 1 <= a <= 2 又a=2^(x-1) 所以a > 0 0 < 2^(x-1) <= 1/2 , x <= 0,此時x無正整數解 1 <= 2^(x-1) <= 2, 0 <= x-1 <= 1 , 此時x有兩個正整數解1,2 <Ans> 2個正整數解 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.113.89.53