看板 Math 關於我們 聯絡資訊
※ 引述《asdc20 (asdc20)》之銘言: : Prove the following inequality used in verifying the maximum norm for : R3. : max{|x1|+|y1|,|x2|+|y2|,|x3|+|y3|} <= max{|x1|,|x2|,|x3|}+max{|y1|,|y2|,|y3|} : 先謝謝各位的回覆...... Let |xj|+|yj| be the largest number of the left hand side. Since |xj| <= max{|x1|,|x2|,|x3|} and |yj| <= max{|y1|,|y2|,|y3|}, we have |xj|+|yj| <= max{|x1|,|x2|,|x3|}+max{|y1|,|y2|,|y3|}. This completes the proof. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.169.99.81
asdc20 :"="我可以理解,但為會啥小於? xj+yj已是最大數, 01/27 19:08
asdc20 :max{|x1|,|x2|,|x3|}和max{|y1|,|y2|,|y3|} 01/27 19:09
asdc20 :不就等於|xj|+|yj|? 01/27 19:10
suhorng :why? xj+yj 是 {xk+yk} 裡的最大 01/27 19:12
suhorng :不一定就 xj 是{xk}裡面最大且 yj 是 {yk} 裡最大 01/27 19:12
suhorng :x1=0, x2=1, x3=1; y1=100, y1=0, y3=0 01/27 19:13
asdc20 :謝謝您 01/27 19:20
armopen :取 x1=0,x2=1,x3=2,y1=100,y2=99,y3=98等號不成立. 01/27 19:22