看板 Math 關於我們 聯絡資訊
※ 引述《tzhau (生命中無法承受之輕)》之銘言: : 設x>=1,y>=1,z>=1,a>1 , : A=[(log_a x)/(1+log_a x)]+[(log_a y)/(1+log_a y)]+[(log_a z)/(1+log_a z)] : B=(log_a xyz)/(1+log_a xyz) : 試證A>=B ,並求等號成立的條件 : 希望有板友給點提示, 謝謝. 令f(x)=(log_a x)/(1+log_a x),x≧1 => f(x) + f(y) = (log_a x)/(1+log_a x) + (log_a y)/(1+log_a y) = [(log_a x)(1+log_a y)+(log_a y)(1+log_a x)]/[(1+log_a x)(1+log_a y)] = (log_a x+log_a y+2log_a x*log_a y)/(1+log_a x+log_a y+log_a x*log_a y) = (log_a xy+2log_a x*log_a y)/(1+log_a xy+log_a x*log_a y) ...(1) ≧ (log_a xy)/(1+log_a xy) ...(2) = f(xy) => f(x) + f(y) + f(z) ≧ f(xy) + f(z) ≧ f(xyz) "="成立 <=> x = y = 1 & xy = z = 1 <=> x = y = z = 1 註(1) 因為x,y≧1,a>0 => log_a x,log_a y≧0 (log_a xy+2log_a x*log_a y)(1+log_a xy)-(1+log_a xy+log_a x*log_a y)(log_a xy) = 2log_a x*log_a y + log_a x*log_a y*log_a xy ≧ 0 註(2) "="成立 <=> log_a x*log_a y = 0 <=> log_a x = log_a y = 0 <=> x = y = 1 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.252.217.131 ※ 編輯: mack 來自: 111.252.217.131 (02/09 20:30)