看板 Math 關於我們 聯絡資訊
Find the adjoint of the following operators L dened on linear spaces S, and indicate whether they are self-adjoint. All quantities are real a) L=d/dt, S = { x屬於C1([0,1];IR) : x(0) = 3x(1)}. 這題我是令y也屬於C1[0,1],然後積分內積,得到∫dx*y/dt=xy|-∫dy*x/dt, 請問之後是直接代入x(0) = 3x(1)嗎? 因為沒看過上下界不為值的題目.... b) The Laplace operator▽= d/dx^2+d/dy^2. S={u屬於C2([0,1]×[0,1],IR):u(0,y) = u(x,0) = u(x,1) = u(1,y) = 0} 這題完全不會,請問集合裡[0,1]×[0,1]是甚麼意思呢? If L = p(t)d^2/dt^2 + q(t)d/dt + r(t); with usual inner product <x,y>=∫x(t)y(t)dt on [a,b], and L and determine conditions on p;q;r such that L is self-adjoint and repeat,using <x,y>=∫w(t)x(t)y(t)dt; p.s.w(t) is weighting function on [a,b] 請問一下在有weighting function下,L*要怎麼用積分證出來呢? Find the eigenvalues and eigenvectors of the following matrices: |1 1| |0 1| 這題我算出來的λ=1,eigenvector為(0,0),請問eigenvector可能為0嗎? Expand vector x = [ 2 0 1 ]T in terms of the normalized eigenvec- tors of A= 0 0 1 0 0 1 1 1 1 請問這題是把A的所有特徵向量,個別乘以x嗎? solve the following eigenvalue problem: a) y"+λy=0 y'(0)=0 , y(π/2)=0 b) Expand function f(x)={0 0<=π/4 {100 π/4 <x<=π/2 這題我算出 eigenfunction y=c1*cos2nx ,但是b)我完全沒頭緒..... 不好意思,題目有點多,謝謝各位... -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 99.63.106.122