看板 Math 關於我們 聯絡資訊
※ 引述《pigheadthree (爬山)》之銘言: : 題目: : log_2 [log_3 (log_4 a)]-log_3 [log_4 (log_2 b)] = log_4 [log_2 (log_3 c)] = 0 : 答案:a + b + c = 89 : 小弟的想法,此題應該是要運用換底公式計算 : 舉例來講:log_10 c / [log_10 3 / (log_10 2 / log_10 4)] = 0 : 但是a、b、c未知,小弟卻無從假設數值計算,實在無從下筆! : 麻煩版上前輩們不吝嗇指導,謝謝! 依照換底公式來講,小弟有個想法,但是答案卻差很多,所以不清楚是否正確? log_4 [log_2 (log_3 c)] = log_10 c / [log_10 3 / (log_10 2 / log_10 4)] = 0 ---> log_10 c / 2.63 = 0 ---> log_10 c = 0 ---> 10^0 = c = 1 log_2 [log_3 (log_4 a)]-log_3 [log_4 (log_2 b)] = 0 log_2 [log_3 (log_4 a)] = log_3 [log_4 (log_2 b)] log_10 a / [log_10 4 / (log_10 3 / log_10 2)] = log_10 b / [log_10 2 / (log_10 4 / log_10 3)] log_10 a / 4.2 = log_10 b / 1.05 所以 log_10 a = 4.2 log_10 b = 1.05 10^4.2 = a = 15849 10^1.05 = b = 11.22 a+b+c = 15849 + 11.22 + 1 = 15861.22 麻煩版上前輩們不吝嗇指教,謝謝! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 1.165.189.17 ※ 編輯: pigheadthree 來自: 1.165.189.17 (02/15 16:04)