看板 Math 關於我們 聯絡資訊
※ 引述《jimlucky (......)》之銘言: : V is the collection of all finite signed measures on R^n with : weak-star topology (generated by the family of semi norm < ,f> where : <m,f>=∫fdm and f is continuous with compact support.) : Show that V is separable. : 最近讀東西遇到的問題,請大大幫忙了~謝謝 引進一個概念叫regularization 對於一個ε>0, 可以找到一個continuous function ρ_ε(x), support掉在ε的球裡面, 而且其Lebesgue積分=1 假設現在有個Borel measure μ, 我可以做一個measure μ_ε μ_ε(E) =∫[ ∫ ρ_ε(x-y)dμ(y) ]dx E 其中dx代表Lebesgue measure 可以簡單證明∫ ρ_ε(x-y)dμ(y) 對x是連續函數 現在假設有個φ是continuous with compact support, 則 (μ_ε, φ) = ∫[ ∫φ(x) ρ_ε(x-y)dμ(y) ]dx = ∫[ ∫φ(x) ρ_ε(x-y)dx ]dμ(y) Fubini's theorem = ∫[ ∫φ(x+y) ρ_ε(x)dx ]dμ(y) (translation invariance) -> ∫φ(y) dμ(y) as ε-> 0, by uni. conv. = (μ, φ) 因此μ_ε-> μ在weak-*下收斂, 隨著ε->0 (所以{μ_ε}稱為μ的regularization) 因為μ_ε是以一個連續函數的Lebesgue積分表示 而L^1 with strong topology又是seperable 所以能找到一個countable subset of continuous functions dense in L^1 既然dense in L^1, 用它Lebesgue積分得到的measure自然會dense在Borel measure中 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 220.132.161.204 ※ 編輯: willydp 來自: 220.132.161.204 (02/27 03:03) ※ 編輯: willydp 來自: 220.132.161.204 (02/27 03:03)
jimlucky :謝謝~我看看~^^ 02/27 10:47