看板 Math 關於我們 聯絡資訊
在寫功課的時候遇到瓶頸... 找了好久找不到linear transformation是symmetric的定義... 雖然知道linear transformation和matrix是isomorphism的關係(有錯麻煩指正^^") 但實在不知道怎麼回答功課的問題 題目是 V: n-dimension subspace with the inner product <.,.> M is a proper linear subspace of V Define: T is a reflection across M, i.e. if for all z in V, z=x+y, where x is in M, y is in the orthogonal complementry of M (y在和M垂直的那個空間) then T(z)=x-y Quesiton: is T symmetric? Why or why not? 然後因為對自己的數學實在很沒有信心 這題還有另外兩小題不知可否麻煩大家順便過目呢 (如有違反版規麻煩告知) 1. T is a linear transformation? Why or why not? Sol: let z1= x1+y1, x1 is in M, y1 is in the orthogonal complementry of M let z2= x2+y2, x2 is in M, y2 is in the orthogonal complementry of M c: a constant T(z1+a*z2)=T[ (x1+y1) + a*(x2+y2) ] =T[ (x1+a*x2) + (y1+a*y2) ] = (x1+a*x2) - (y1+a*y2) = (x1-y1) + a*(x2-y2) = T(z1) + a*T(z2) therefore, T is a linear transformation 2. T is a projection? Why or why not? Sol: if T is a projection, then T 作用兩次還是T T[ T(z) ] = T(x-y)=T(x)-T(y)=x-(-y)=x+y but T(z)=x-y thereofore, T is not a projection 謝謝大家幫忙!! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 108.3.154.49
keroro321 :|R^n: 就看看是不是self-adjoint 03/31 08:44