看板 Math 關於我們 聯絡資訊
※ 引述《amy29585028 (Amy是男是女都不重要)》之銘言: : 試證明對所有的正整數n: : 1^2013+2^2013+...+n^2013 : 皆可以被1+2+...+n整除 : 小弟我推不出結論,不知道是不是有什麼技巧?懇請高手指點,謝謝。 In this proposition, 2013 can be replaced by any positive odd number. We show the case n=2k, A = 1^t + 2^t + ... + (2k)^t, where t is odd S = 1+2+...+2k = k(2k+1) (i) k and 2k+1 are coprime (ii) A = 0 mod k proof. A = 1^t + 2^t + ... + k^t + 1^t + 2^t + ... + k^t mod k = 2(1^t + 2^t +...+ k^t) mod k However, by Mathematical Induction 1^t + 2^t + ... + k^t = k(k+1)/2 * Q Hence, A = k(k+1) = 0 mod k (iii) A = 0 mod 2k+1 proof. A = 1^t + 2^t + ... + k^t + (-k)^t + ... + (-1)^t = 0 mod 2k+1 done. ------------------------------------------ The case n=2k+1 is similar, and left to you. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 123.194.96.239 ※ 編輯: JohnMash 來自: 123.194.96.239 (04/03 13:18)
littlesung :http://disp.cc/b/163-5gyX 神探JohnMash 04/03 15:09
thisday :這神探柯南^^ 04/03 15:25
amy29585028 :感謝推 04/03 16:27